

Biochemical diversity and genetic structure of Dalmatian sage (*Salvia officinalis* L.)

Ivan Radosavljević, Danijela Greguraš, Marija Jug-Dujaković, Zlatko Liber, Zlatko Šatović

Salvia officinalis L. – Dalmatian sage

Family: Lamiaceae
Subfamily: Nepetoideae
Tribus: Mentheae
Genus: Salvia
Section: Salvia

(30-40 species – Mediterranean, Irano-Turanian region

- natural range of distribution – along the eastern Adriatic coast with inland populations in central parts of Balkan peninsula, central and southern Apennines

- numerous naturalized populations

Importance:

- highly valued essential oil with more than 100 compounds identified
- has the highest essential oil yield among Salvia species
- in the pharmacopoeias of many countries throughout the world
- well known medicinal plant since earliest times (ancinet Egypt, Greece, Roman empire, throughout Middle ages...)

Uses:

- antimicrobal, fungicidal and antiviral activities
- anti-inflamantory
- spasmolytic
- antidiabetic
- skin care
- as insect repellent
- as flavouring and antioxidant (food preservative) agent
- etc.

The toxicity of S. officinalis essential oil

- caused by ketone terpenoids thujone and camphor
- the experimental study in rats: the limit toxic dose of sage essential oil was 300 mg/kg (letal at1.25 mg/kg)
- average man $(70 \text{ kg}) \rightarrow 21 \text{ g of essential oil}$
- essential oil yield: < 5 g/kg of fresh material

CAUTION: Do not eat more than 4 kg of fresh *S. officinalis* at once and you will be just fine ⁽³⁾

The composition of the essential oil:

- cis-thujone \rightarrow 18.0-43.0%
- camphor $\rightarrow 4.5-24.5\%$
- 1,8 cineole \rightarrow 5.5-13.0%
- trans-thujone $\rightarrow 3.0-8.5\%$
- alpha-humulene $\rightarrow > 12.0\%$
- alpha-pinene $\rightarrow 1.0-6.5\%$
- camphene $\rightarrow 1.5-7.0\%$
- limonene $\rightarrow 0.5$ -3.0%
- bornyl acetate $\rightarrow >2.5\%$
- linalool + linalyl acetate $\rightarrow >1\%$

(according to ISO 9909)

The quantity and composition of *S. officinalis* essential oil is mostly affected by:

- genotype
- environmental factors
- physiological stage
- ratio of leaves/flowers/stems used for distillation
- drying

Aim of research:

• to assess the levels of chemical and genetic diversity of indigenous populations of *S. officinalis* as a background for possible breeding/cultivation program

25 populations, ~ 600 samples25 samples/ population

Ex situ cultivation! – to discard the possible environmental factors

Essential oil isolation and analysis Extraction: from dried plant material by hydrodistillation (according to 5th European Pharmacopoeia) Analysis: Gas Chromatography (GC/FID) Gas Chromatography-Mass Spectrometry

Microsatellite markers	for genetic analisys, eight loci:	
SoUZ001	SoUZ011	
SoUZ002	SoUZ013	
SoUZ003	SoUZ014	
SoUZ007	SoUZ019	,
		/

The essential-oil composition and chemical diversity of indigenous populations of *S. officinalis*

• the essential-oil yield from dried leafs $\rightarrow 1,9\% - 3,7\%$ (avarage of 2,8%)

- 62 detected compounds
- most abundant compounds: cis-thujone, camphor and trans-thujone
- compounds detected in concentrations higher than 5% in any population were chosen for further analysis (cis-thujone, camphor, trans-thujone, 1,8-cineole, b-pinene, camphene, borneol, and bornyl acetate)
- by using multivariate analyses on the basis of eight major compounds, three chemotypes were distinguished: (A) cis-thujone, (B) trans-thujone and (C) camphor chemotype

Biplot of the PCA Based on the eight main essential-oil compounds 1.5 1.0 **P**24 P21 trans-Thujone P17 P23 0.5 Camphene P06 🗖 Bornyl acetate P19 P22 PC2 (18.09%) Borneol P10 🗖 P12 P04 β -Pinene -1.0P08 P02 -2.0 -1.5 0.5 1.0 1.5 P09 Camphor P05 🕊 P25 **P**13 P11 **P**16 1,8-Cineole P07 -0.5 P20 P03 P14 Chemotype: A P18 cis-Thujone C

PC1 (46.78%)

-1.0 -

According to ISO 9909

The genetic diversity of indigenous populations of *S. officinalis*

Ancestral populations as revealed by computer program STRUCUTRE

Thank you for your time 😊