

State-of-the-art technologies: Challenge for the research in Agricultural and Food Sciences

Epigenetic vs. Genetic Diversity in Natural Plant Populations: A Case Study of Croatian Endemic Salvia Species

Zlatko Šatović

University of Zagreb, Faculty of Agriculture Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb e-mail: zsatovic@agr.hr

April 18-20, 2016 Belgrade, Serbia

Epigenetics « » Ecology « » Evolution

- (1) In plants, epigenetic variations based on DNA methylation are often transmitted across generations
- (2) Epigenetic changes are mostly independent from variation in the DNA sequence
- (3) Epigenetic changes are environmentally induced
- (4) Epigenetic changes can be influenced by genomic perturbations (e.g. inter-specific hybridisation)

Epigenetic change could play an important role in natural selection, adaptation and plant evolution

Population genetics

Population genetics and epigenetics Population Phenotypic genetics Gene diversity **Population** expression epigenetics Genetic Epigenetic **Environment** diversity diversity Natural selection

Questions

- (1) How is epigenetic variation distributed within and among populations in comparison to genetic variation?
- (2) Are there ascertainable patterns of epigenetic variation related to particular environmental factors?
- (3) What is the level of epigenetic variation among genetically identical organisms of a clonal species?
- (4) Do natural hybrids show higher epigenetic variability than their parental species?

Plant material

- wild populations:
- (1) Dalmatian sage (Salvia officinalis L.)
- (2) Short-toothed sage (5. brachyodon Vandas.)
- (3) Auriculate sage (Salvia x auriculata Mill.)
 - = Dalmatian sage (S. officinalis L.)
 - x Greek sage (5. fruticosa L.)

Molecular markers

- (1) Genetic markers
 - Simple Sequence Repeats (SSR; microsatellites)
- (2) Epigenetic markers
 - Methylation-Sensitive Amplified Polymorphism (MSAP)
 - a modification of the Amplified fragment length polymorphism method (AFLP) based on the differential sensitivity of isoschizomeric restriction enzymes to site-specific cytosine methylation

Question 1

(1) How is epigenetic variation distributed within and among populations in comparison to genetic variation?

Genetic diversity

Epigenetic diversity

(1) Dalmatian sage

- Salvia officinalis
- perennial allogamous subshrab
- distibution:
 northern coasts of
 the Mediterranean
- samples:
 25 populations
 23 Croatia
 2 BiH
 25 plants/population

Partition of genetic/epigenetic variability

- Analysis of molecular variance (AMOVA):
 - % variance among populations
 - % variance within populations

- similar partition of genetic and epigenetic diversity

Genetic structure

- three clusters:

Slovenia Allelic richness Northern Adriatic 7.55 CROATIA Middle Adriatic 8.55 Southern Adriatic 9.50 P02 P05 0.003 **P06** P11 _{P13} (A) Northern Adriatic Bosnia and Herzegovina P10 P17 P15 **P**19 (B) Middle Adriatic **P20**

(C) Southern Adriatic

Genetic vs. epigenetic diversity

SSR N_{ar} / MSAP P% SSR N_{ar} / MSAP H r = 0.24 r = 0.31 $R^2 = 0.05$ $R^2 = 0.09$

- weak correlation between genetic and epigenetic diversity

Question 2

(2) Are there ascertainable patterns of epigenetic variation related to particular environmental factors?

Environmental factors

Epigenetic diversity

Environmental factors and epigenetic diversity

(1) Environmental data

- 19 bioclimatic variables
- WordClim database (www. worldclim.org)
- 25 sampling sites

(2) Logistic regression

- multiple univariate logistic regressions
- the probability of presence of an allelic variant of a polymorphic marker given the environmental conditions of sampling locations
- software Samßada

Epigenetic markers vs. bioclimatic variables

No.	Bioclimatic variable	No. MSAPs
BIO1	Annual Mean Temperature	0
BIO2	Mean Diurnal Range	8
BIO3	Isothermality	8
BIO4	Temperature Seasonality	4
BIO5	Max Temperature of Warmest Month	0
BIO6	Min Temperature of Coldest Month	2
BIO7	Temperature Annual Range (P5-P6)	4
BIO8	Mean Temperature of Wettest Quarter	5
BIO9	Mean Temperature of Driest Quarter	0
BIO10	Mean Temperature of Warmest Quarter	1
BIO11	Mean Temperature of Coldest Quarter	0
BIO12	Annual Precipitation	6
BIO13	Precipitation of Wettest Month	3
BIO14	Precipitation of Driest Month	13
BIO15	Precipitation Seasonality	8
BIO16	Precipitation of Wettest Quarter	3
BIO17	Precipitation of Driest Quarter	13
BIO18	Precipitation of Warmest Quarter	12
BIO19	Precipitation of Coldest Quarter	5

- 36 significant MSAP markers (related to multiple traits):
 - (1) Precipitation-related traits
 - (2) Traits describing temperature/precipitation range

Question 3

(3) What is the level of epigenetic variation among genetically identical organisms of a clonal species?

Genetic uniformity

Epigenetic diversity

(2) Short-toothed sage

- Salvia brachyodon
- three known localities:
 - 1. Sv. Ilija, Pelješac Croatia
 - 2. Velji Do, Konavle, Croatia (2013)
 - 2. Mt. Orjen, BiH/Montenegro
 - propagation:generativevegetative
 - samples: 25 per pop.

Genetic distance

Genetic vs. epigenetic diversity

- considerable differences in clonal and genetic diversity
- small differences in epigenetic diversity

Genetic vs. epigenetic distance

moderate correlation between genetic and epigenetic distances

Genetic vs. epigenetic distance

considerable epigenetic distances
 between genetically identical plants

Question 4

(4) Do natural hybrids show higher epigenetic variability than their parental species?

Genome stress

Epigenetic mechanisms

(3) Auriculate sage

- S. x auriculata
- hybrid species:Dalmatian (So)x Greek sage (Sf)
- known from artificial crossings
- natural hybrids: island of Vis —
- samples:

16 So

25 Sxa

38 Sf

Morphological diversity

- based on 22 qualitative and 19 quantitative traits

5. officinalis 5. x auriculata

- S. fruticosa
- high morphological diversity of Sf

- low genetic diversity of Sf

Genetic structure

Genetic vs. epigenetic diversity

- the highest % polymorphic markers in Sf
- higher level of epigenetic diversity of hybrids in comparison to parental species

It seems that...

- (1) So: Partitions of genetic and epigenetic diversity within and among populations follow the same pattern, but there the correlation between genetic and epigenetic diversity is weak
- (2) So: Epigenetic variation is related to environmental factors that are crucial for survival of populations
- (3) Sb: Relatively high epigenetic distances among genetically identical individuals may contribute to evolutionary persistence of populations in clonal species
- (4) Sxa: Low genetic diversity but pronounced phenotypic plasticity of greek sage could be explained by epigenetic mechanisms

Epigenetic vs. Genetic Diversity in Natural Plant Populations: A Case Study of Croatian Endemic Salvia Species

The project is financed by Croatian Science Foundation Project team:

Zlatko Šatović Klaudija Carović-Stanko Martina Grdiša Ivan Biruš

Jerko Gunjača Sandro Bogdanović

Zlatko Liber Toni Nikolić Ivana Rešetnik Ivan Radosavljević

Vlatka Zoldoš Vedrana Vičić

Marija Jug-Dujaković

Please, visit our project's web-site at: hirc.botanic.hr/EpiSalvia/en/

