

GENETIC DIVERSITY OF WILD vs. CULTIVATED/NATURALIZED POPULATIONS OF DALMATIAN SAGE

Zlatko Šatović

University of Zagreb, Faculty of Agriculture, Zagreb, Croatia

Centre of Excellence for Biodiversity and Molecular Plant Breeding,

Zagreb, Croatia

E-mail: zsatovic@agr.hr

PLAN

- (1) Dalmatian sage (Salvia officinalis L.)
- (2) Genetic diversity and relationships
- (3) Genetic structure
- (4) Ecological niche modelling
- (5) Demographic history

PLAN

- (1) Dalmatian sage (Salvia officinalis L.)
- (2) Genetic diversity and relationships
- (3) Genetic structure
- (4) Ecological niche modelling
- (5) Demographic history

DALMATIAN SAGE

- Salvia officinalis L.
- outcrossing, insect-pollinated
- perennial subshrub
- widely used since ancient times for medicinal, culinary and ornamental purposes
- natural distribution:
 coastal region of the
 western Balkan and central
 and southern Apennine
 Peninsulas
- cultivation:
 - throughout the Mediterranean region, in Australia, Germany, USA etc.
- naturalized populations:
 plants that have escaped from earlier cultivation

NATURAL DISTRIBUTION OF DALMATIAN SAGE

PLAN

- (1) Dalmatian sage (Salvia officinalis L.)
- (2) Genetic diversity and relationships
- (3) Genetic structure
- (4) Ecological niche modelling
- (5) Demographic history

GENETIC DIVERSITY

(1) Collecting

- leaf tissue for DNA extraction
- 30 populations / 709 samples (20 to 25 per populations)
- origin:
 - 11 Balkan countries
- status:
 - 23 wild populations
 - 7 cultivated/naturalized populations
- (2) DNA extraction
- (3) Molecular marker analysis
- 8 microsatellite markers developed for Dalmatian sage (simple sequence repeats; SSRs)
- 165 alleles

COLLECTING

MOLECULAR MARKER ANALYSIS

(A) Isolation and characterization of microsatellites

- construction of microsatellite libraries from genomic
 DNA for GA, GT, AGA and ACA repeats
- primer pairs flanking microsatellite repeats were designed for 29 clones
- 29 microsatellites were tested using 25 plants
- (B) Microsatellite marker analysis
- eight most polymorphic markers: 165 alleles

MOLECULAR DATA

Population	Individual	SoUZ001	SoUZ001	SoUZ002	SoUZ002	SoUZ019	SoUZ019
PO1	5001	173	189	183	185	135	150
PO1	5002	165	199	185	185	150	153
PO1	5003	183	185	195	197	150	159
PO1	5004	163	187	189	195	150	150
PO1	S 005	165	167	187	195	135	150
PO1	5006	165	183	185	187	135	156
PO1	5007	173	183	185	195	150	159
PO1	5008	165	167	183	195	135	135
PO1	5009	165	171	181	183	147	150
PO1	S 010	165	173	195	201	150	159
• • •							
P30	5709	161	165	185	195	135	150

GENETIC DIVERSITY

(1) Average no. of alleles per population (N _{av})		Wild	Cultivated	
	No.	23	7	
(2) Allelic richness (N_{ar}) - average no. of alleles per	N_{av}	8.696	3.821	
population independent of sample size	N _{ar}	7.920	3.672	
(3) No. of private alleles (N_{pr})	Range	5.13-10.30	2.71-4.19	
 number of alleles 	$P(N_{ar})$	P < 0.001		
detected in a single population (or in a group of	N _{pr} (total per population)	20	0	
populations: wild vs. cultivated)	N _{pr} (wild vs. cultivated)	115	0	

ALLELIC RICHNESS

GENETIC RELATIONSHIPS

- distance matrix:Cavalli-Sforza and Edwards'chord distance
- tree algorithm:Neighbour-joining
- unrooted tree

- seven cultivated/naturalized

populations grouped

separately from the rest

and formed a well-supported

clade (bootstrap support 99%)

suggesting the common origin

of the cultivated plant material

PLAN

- (1) Dalmatian sage (Salvia officinalis L.)
- (2) Genetic diversity and relationships
- (3) Genetic structure
- (4) Ecological niche modelling
- (5) Demographic history

GENETIC STRUCTURE

Bayesian model-based clustering method for inferring population structure

Assumption:

 there are K populations of origin each of which is characterized by a set of allele frequencies at each locus

Goal:

- assign individuals to populations of origin in such a way that within each population the departures from:
 - (1) Hardy-Weinberg equilibrium (HWE) and
 - (2) linkage equilibrium (LE)

are minimized

PROCEDURE

- (1) Estimation of the number of Ks
 - populations of origin
 - (1.1) Choose different values of K
 - (1.2) Compute posterior probabilities for each K
 - (1.3) Choose the most likely number of populations (K)
- (2) Assignment
 - (2.1) Assign individuals to populations (K)
 - (2.2) For each individal, estimate the proportion of genome derived from the different population of origin

- proportions of membership (Q) of each individual plant in each of the two clusters (population of origin):
 - each individual plant is represented by a single vertical line divided into colors representing different clusters
 - the length of the colored segment shows the individual's estimated proportion of membership in that cluster

A1 North-West populations

A2 South-East Cultivated populations populations

- the cluster A (Wild populations) is at K = 3 split into two clusters according to geographical locations

A1 North-West: Adriatic populations

A2 South-East: Montenegro-Albania-Macedonia-Greece

- wild populations split further into three clusters

PLAN

- (1) Dalmatian sage (Salvia officinalis L.)
- (2) Genetic diversity and relationships
- (3) Genetic structure
- (4) Ecological niche modelling
- (5) Demographic history

ECOLOGICAL NICHE MODELLING

- species distribution modelling (SDMs)
 - estimate the relationship between species records at sites and the environmental characteristics of those sites
 - predict the suitability of sites for occupation or persistence of the species
 - produce a modelled distribution of the species (= identify species' suitable environmental space)
- input data:
 - (1) geographic distribution 68 data on occurrence (evenly distributed)
 - (2) environmental characteristics of the sites 19 bioclimatic variables (WorldClim database)
 - 11 temperature- and 8 precipitation-related
 - representing the annual trends, seasonal variations and extremes in temperature and precipitation

ENM: PRESENT DAY CONDITIONS

ENM: PRESENT DAY CONDITIONS

PAST DISTRIBUTION

- to model potential species distribution during the Last Glacial Maximum (LGM; ~21,000 years BP)
- to identify putative glacial refugia of the species (= region which made possible the survival of the species and allowed a post-glacial re-colonization)
- input:
 - (1) the present model
 - (2) past environmental characteristics of the sites
 19 bioclimatic variables
 bioclimatic data for the LGM developed by
 Paleoclimate Modelling Intercomparison Project Phase II
 - two models:

CCSM (Community Climate System Model; USA)
MIROC (Model for Interdisciplinary Research on Climate; Japan)

ENM: LAST GLACIAL MAXIMUM CCSM CONDITIONS

ENM: LAST GLACIAL MAXIMUM MIROC CONDITIONS

PLAN

- (1) Dalmatian sage (Salvia officinalis L.)
- (2) Genetic diversity and relationships
- (3) Genetic structure
- (4) Ecological niche modelling
- (5) Demographic history

DEMOGRAPHIC HISTORY

- inference on demographic history of a species based on approximate Bayesian computation (ABC)

- input:

- molecular data
- scenarios describing demographic history

- procedure:

- simulate (a large number of) datasets for each scenario
- compare simulated and observed datasets
- the most similar simulated dataset is the most likely

- goal:

- compare competing scenarios
 posterior probability of each scenario
- estimate parameters for one or more scenarios effective population size; time of divergence

POPULATIONS

FIVE SIMPLE HISTORIC SCENARIOS

Scenario 1

Population A1 is derived from population A2, itself derived from population A3

Scenario 2

Population A3 is derived from population A2, itself derived from population A1

FIVE SIMPLE HISTORIC SCENARIOS

FIVE SIMPLE HISTORIC SCENARIOS

Scenario 5

All three populations diverged at the same time

RESULTS:

Scenario	Posterior probability (PP)
1	0.166
2	0.193
3	0.075
4	0.126
5	0.440

HISTORICAL RECONSTRUCTION: ANCIENT PAST

Distibution of Dalmatian sage before the last glaciation?

ABC Effective population sizes:

Ancestral	8,550 inds
A1	4,330 inds
A2	7,190 inds
A3	2,440 inds

Vegetation map of Europe during the last glacial period

Glacial refugia:

- 1. Iberian Peninsula
- 2. Apennine Peninsula
- 3. Balkan Peninsula

HISTORICAL RECONSTRUCTION: DIVERGENCE

Distribution of Dalmatian sage during the Last Glacial Maximum

A2 A1 A3

ABC Time of divergence: 572 generations ago (95% CI: 157-1,540)

Generation time (life span): up to 300 years

Map of the 52 putative refugia within the Mediterranean region

HISTORICAL RECONSTRUCTION: PRESENT TIME

Rešetnik, I., Baričević, D., Batîr Rusu, D., Carović-Stanko, K., Chatzopoulou, P., Dajić-Stevanović, Z., Gonceariuc, M., Grdiša, M., Greguraš, D., Ibraliu, A., Jug-Dujaković, M., Krasniqi, E., Liber, Z., Murtić, S., Pećanac, D., Radosavljević, I., Stefkov, Gj., Stešević, D., Šoštarić, I., Šatović, Z. 2016. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae). PLOS One 11(7): e0159545 (doi: 10.1371/journal.pone.0159545)